

Inventory Optimization for Industrial Network Flexibility

P. Garcia-Herreros, B. Sharda, A. Agarwal, J.M. Wassick & I.E. Grossmann

Project Update Sept 2014

Motivation

Process networks describe the operation of chemical plants

Inventories are necessary because of process uncertainty:

- Raw material storage tanks hedge against supply variability
- Intermediate storage tanks hedge against production rates variability
- Finished product inventories hedge against demand variability

Holding inventory is expensive!

Need to trade-off between inventory and stock-out cost

Problem Statement

Given:

- A process network with several processing units
- A discrete time finite horizon
- Probabilistic description of supply, processing rates, and demand over the entire horizon
- Storage units

Find the operating plan that minimizes inventory and stockout costs:

- Determine the optimal inventory management strategy in every time period
- Location of inventory
- Amount of inventory

Stochastic Modeling Approaches for Multiperiod Problems

Multi-stage stochastic programming approach:

- Requires discrete uncertainty distributions
- Yields minimum expected cost
- **Recourse actions** are optimized for individual realizations at multiple stages
- Intractable for long time horizons (too many scenarios)

Two-stage stochastic programming approach:

- Sample paths from initial time to final time period
- Assumes that the future can be anticipated after first stage
- **Recourse actions** consider a single scenario
- Solvable for many scenarios

Decision rule approach:

- Sample paths from initial to final time period
- Decisions in any time period are functions of the state
- **Recourse actions** are state functions of the individual realizations
- Does not anticipate future
- Solvable for many scenarios

Decision Rules for Inventory Management

Inventory Policies:

Rules to establish when inventories are depleted, replenished, and their priorities

Base-stock policy in capacitated network:

- 1. Satisfy demands (*D*) according to priorities using available supply (*S*) and production capacities (*R*)
- Update D, S, R_1, R_2 , and R_3

- Update D, S, R_1 , R_2 , R_3 , I_1 , and I_2
- 3. Replenish inventories according to priorities using left over supply (*S*) and production capacities (*R*)
 - Update S, R_1 , R_2 , R_3 , I_1 , and I_2
- 4. Stop inventory replenishments at base-stock levels (*b*)
- 5. Repeat for next time-period

Base-stock policy is specified by the base-stock level (*B*)

Logic of Policies

Mass balances:

 $f_1 = f_2 + f_3$ $f_3 = C_1 f_2$

 $f_6 = f_3 + f_5$

Resource capacities:

 $\begin{array}{l} f_2 + u_1 = R_1 \\ f_4 + u_2 = R_2 \end{array}$

Process priorities: Priority of R_1 over R_2 $[u_1 = 0] \lor [f_4 = 0]$

Serial operation

Mass balances:

 $f_8 = C_3 f_7$

 $\begin{aligned} f_{11} &= C_4 f_{10} \\ l_1^{t+1} &= l_1^t + f_8 - f_9 \end{aligned}$

Resource capacities:

 $f_7 + u_S = S$ $f_7 + u_3 = R_3$ $f_9 + u_4 = R_4$ $f_{11} + so = D$

Inventory priorities:

Priority of *D* over l_2 and l_2 over l_1 [so = 0] \lor [$l_2 = 0$] [$l_1 = 0$] \lor [$l_2 = b_2$] \lor [$u_4 = 0$] [$u_5 = 0$] \lor [$u_3 = 0$] \lor [$l_1 = b_1$]

ParametersS: Supply rate R_i : Capacity of unit i C_i : coefficient of unit iD: demand rateVariables f_j : flowrate j u_i : underutilization of resource i l_k : inventory level at storage k b_k : base-stock of storage kso: unsatisfied demand $f_{i_k} u_i l_k b_k \ge 0$

Operating plan is completely specified by the policy according to the realization of uncertain parameters (S, R_i , and D)

Multistage Formulation (MILP)

Dow

Implementation

Challenges:

• Arbitrary distributions for uncertain parameters

Solution approach:

• Sample-path optimization

Discrete-time samples of random parameters during planning horizon (0,T):

- Available supply: S_t
- Maximum processing rates: *R*_t
- Demand rates: D_t

Solution approximates the optimal operating plan given the current state (at t=0) and the probabilistic model of future realizations 8

Evaluating the Solutions

Simulate the implementation of the optimal first-stage decision

Algorithm:

- 1. Initial state $(S^0, R^0, D^0, cost^0=0)$
- 2. Draw *N* sample paths of length *T*
- 3. Solve the multi-stage optimization problem
- 4. Accumulate the cost incurred in first stage
- End if the end of evaluation period is reached Else, update initial state and return to 2

Repeat the implementation of the algorithm to estimate mean and variance of the results

Illustrative Example

10

Process network with failures, uncertain supply, and uncertain demand

Data

Evaluation period: $H = 25$ day	Number of sample paths: <i>N</i> = 50		Planning horizon: $T = 4$ day	
Supply: $S \sim N\left(12 + 2 * \sin\left(\frac{2\pi h}{H}\right), 1 + h/H\right) \text{ton/day}$		Demand: $D \sim N\left(8 + 2 * \sin\left(\frac{2\pi h}{H}\right), 1 + h/H\right) \text{ ton/day}$		
Probability of operation:	$\pi_1=0.95$	$\pi_2=0.95$	$\pi_3 = 0.92$	$\pi_4 = 0.87$
Mass balance coefficients:	$\alpha_1 = 0.92$	$\alpha_2 = 0.90$	$\alpha_3 = 0.85$	$\alpha_4 = 0.75$
Processing capacity:	$R_1 = 5$	$R_2 = 5$	$R_3 = 7$	$R_4 = 9$
Cost coefficients:				
Production costs:	$\mu_1 = 0$	$\mu_2 = 0$	$\mu_{3} = 0$	$\mu_4 = 0$
Inventory holding cost:	$h_1 = 5 / (\text{ton-day})$		$h_2 = 10 / (\text{ton-day})$	
Penalty for unmet demand:	p = \$50 / ton			

- Two-stage approach yields higher cost when evaluated in a rolling horizon
- Expected savings are \$22.1 (5%) during the 25 day horizon

- Two-stage approach accumulates less inventory but has higher stockouts
- Two-stage approach assumes a degree of flexibility that is impossible to implement

Conclusions

Novelty:

- Framework for inventory planning in finite horizons
- Extension of the methodology for uncertain parameters with timevarying distributions
- Detailed logic for units in parallel and in series
- Methodology to evaluate results
- Significant improvement over two-stage approach

Impact for industrial application:

- Supply and demand forecasts can be used directly for inventory optimization
- Inventory management considering predictable and unpredictable events